第202章 二项式定理之实例探究 (第1/5页)
飘天文学 ptwx.net,最快更新文曲在古!
第 202 章 二项式定理之实例深究
数日已过,戴浩文于讲堂之上,再论二项式定理之妙处。其身着素袍,手持戒尺,目光炯炯,环视诸生。
言曰:“前番已授汝等二项式定理之要义,今当以实例详析,以增汝等之领悟。”
遂于黑板书一题:“今有一商人,欲购货物,其价依二项式(a + b)^n 而定,其中 a 为原价,b 为涨幅,n 为购货之次数。若原价为十金,涨幅为三金,购货三次,试求其总价几何?”
诸生见此题,皆低头沉思,奋笔疾算。
少顷,一生起身答曰:“先生,依二项式定理展开,可得总价为 a^3 + 3a^2b + 3ab^2 + b^3 ,代入数值,即为 10^3 + 3x10^2x3 + 3x10x3^2 + 3^3 = 1000 + 900 + 270 + 27 = 2197 金。”
戴浩文微微颔首,曰:“善。然此仅为其一例,再观此题。”
又书一题:“某工匠制器,其成功率为(a + b)^n ,其中 a 为成功之概率,b 为失败之概率,n 为制器之数。若成功概率为半,制器五次,求至少成功三次之概率。”
诸生闻此,交头接耳,讨论纷纷。
一聪慧之生言道:“先生,此当用二项式定理分别算出成功三次、四次、五次之概率,再相加可得。”
(本章未完,请点击下一页继续阅读)